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Abstract 

We give here a new exact solution to the exterior Einstein field equations for a rotating 
infinite cylinder. The solution is characterized by an everywhere singular metric. In the 
Papapetrou canonical coordinates, the 3-force acting on a radially moving test particle is 
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where X > O. f l  a n d f a  are, respectively, the gravitational and Coriolis forces. The 
gravitational force is, therefore, repulsive. 

1. Introduction 

Solutions of Einstein field equations for axially symmetric sources have 
received considerable interests. A class of solutions for an uncharged rotating 
infinite cylinder has been obtained by Chakravarty (1974), Lewis (1932), and 
van Stockum (I 937). 

We give here a new, nontrivial solution to the latter problem. This solution 
is characterized by an everywhere singular metric. This property, on the one 
hand, explains why this solution was not obtained as a member of the 
Chakravarty's "exhusive" class of solutions. On the other hand, the singular 
character of the metric is presumably imposed by the physical problem at 
hand: The gravitational mass is infinite. Therefore, the distorsion in the 
geometry is likely to be infinite too. Furthermore, unlike the existing ones, 
our solution is constrained by a physical boundary condition at infinity. 

Space-time singularities are of central interest in general relativity 
(Hawking and Ellis 1973). Here is an example where the space-time is every- 
where singular. As a further interesting feature, in the Papapetrou canonical 
coordinates, the gravitational force turned out repulsive. 
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2. The Field Equations 

Using the Papapetrou canonical coordinates (Papapetrou 1953), the line 
element reads 

_ds2 = f~l [e2.Y(dp2 + dz2) + p2 d~2] - f ( d t  - o3d~)) 2 (2.1) 

where, f, 3', and co are functions of p and z only. One may use the exterior 
calculus technique, for example, to derive the Einstein field equations in 
vacuum (Ernst, 1967): 

fV2 f  = (V f )  2 ..... p-2j'4(Vee)2 (2.2) 

V" (p-2f2 Vee) = 0 (2.3) 

%0 = ¼P {(1/f2)(f2,o -f2,z) -- p--2f2 [(ee,p)2 _ (ee,z)2] } (2.4) 

and 

1 [f, } v , z  -- - P-212ee'P °'z ( 2 . 5 )  

Here, V is the ordinary gradient in the cylindrical coordinates: p, z, and ~b. 

3. An Exact Sohttion Depending on p Only 

Consider an infinitely long cylindrical source. We propose the existence of a 
solution to equations (2.2)-(2.5) for the given problem where f =  oo everywhere. 
However, the gradient 3fis almost everywhere a nonsingular quantity. We prove 
this solution by self-consistency. 

The singular character of the proposed solution makes the mathematics 
delicate. A concise way of arriving at such solution would be by determining 
its behavior for an arbitrarily long but finite cylindrical source. Then, letting 
the length approach infinity, we get the desired results. This is essentially our 
procedure. However, we make some argmnents to simplify an otherwise very 
difficult problem. 

Thus, let the source be of length L with ends at z = ~L/2. In equations (2.2) 
and (2.3), as L gets arbitrarily large, the terms with partial derivatives with 
respect to z should get negligibly small compared to the counterpart terms with 
partial derivatives with respect to p. In the limit as L -+ ~o, equations (2.2) and 
(2.3), respectively, reduce to 

f ,l 
lm Yl ~ + = -- (3.t) 

r - ~  ~d. p kdp I k dp/. 

and 

lira R-V 2 dee = C1 (3.2) 
L--> o~ d p  
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C a is an arbitrary constant, From equations (3.1) and (3.2)we find 

We may restate our trial solution in term of the limit L ~ oo, as limL ~ 
f = ~ everywhere and lim L-~ = df/dp is almost everywhere a nonsingular 
quantity. This trial solution should imply, according to equation (3.3), that 

lim d2 f  " 1 d r _  0 (3.4) 

Equation (3.4) has the first integral 

lim d f  = C2/p (3.5) 
L ~  d p  

where C2 is a second arbitrary constant. 
The Boundary Condition. The existing solutions to the problem do not 

reduce to the flat space-time, nor do they have a common limiting form at 
infinity. The latter property leaves it open to determine the boundary 
condition on the metric tensor at infinity on a purely physical ground. A 
discussion of the boundary condition on the metric tensor at infinity is given 
by Petrov (1969). It is generally accepted that, in a suitable reference frame, 
the space-time metric tensor due to a finite, time-independent distribution of 
matter should reduce to the Minkowskian form at infinity: There is no 
gravitational radiation, while the space-time distortion due to the presence 
of matter should diminish at infinity. Accordingly, for the finite cylindrical 
source we can impose the boundary condition limp--, ~ f = 1. This condition 
holds true for an arbitrarily long source. Therefore, it must be valid in the 
limit as L -~ pp. That is, limL --, oo f ( p  = oo) = 1. 

Using the above boundary condition together with g0o = - f <  0, we 
conclude C2 < 0 and 1 

lim f ( p ) =  lira f (oo)_ lira ( c l _ f d p  (3.6) 
L --+ o¢ L --+ oo L --~ oo J ap 

=co  tO 

Equations (3.5) and (3.6) show that our trial solution is self-consistent. 
That is, we have started by a trial solution of the form tirol-~ ~ f ( p )  = ~o 
everywhere and limL ~ ¢¢ df/dp is almost everywhere a nonsingular quantity. 
We substituted this trial solution into equation (3.3) and used a physical 
boundary condition, then there resulted an output solution, equations (3.5) 
and (3.6), that has the same input properties. 

From equations (2.4), (2.5), (3.2), and (3.6) one finds 

l i m e  2.r = C3 = const (3.7) 
L ,---~ ~ 

1 N o t e  t h a t  f o r  a n  a r b i t r a r i l y  la rge  Po, w e  h a v e  

Po PO 

t i m  ~ d f  dp = ~ lim --df dP = C21n(po) - £½ln(p) 
L -+ o~ ,J p L ~ ~ d p 

P p 
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lim ¢o = C4 = const (3.8) 
L--+ oo 

From the spacelike nature of  dp and dz we should have, according to equation 
(2.1), 6"3 > 0. 

It should be mentioned here that although w turned out constant in the limit 
L -+ o% our solution may not be considered as a static type. We shall see in the 
next section that the derivative of  co, according to equation (3.2), gives rise to 
a Coriolis effect. Finally, owing to its everywhere singular character, the given 
solution is an entirely new one. It is not a special case of  some existing solution, 
nor can it be implied by  the general group theoretical considerations as given 
by Petrov (1969). 

4. The Equation o f  Motion 

We begin by defining the 3-velocity of  a test particle as (Landau and 
Lifshitz, t962)  

dx  c~ 

v ~ ( d x  0 _ gadx~ ) 
(4.1) 

where, h = -go0 and ga = -goa/goo. The 3-force, f~, acting on a test particle 
of  mass m in the gravitational field is then defined as 

f ~ - _ ~  DP~_ 
ds (4.2) 

where, D is a covariant differential relative to the 3-space metric tensor 

Furthermore, 

and 

7c~ = gc~ - goc~go~/goo (4.3) 

m y  a 
p a  - (4.4) 

v 2 = 7 ~ v %  ~ (4.5) 

It follows from equation (4.2) that 

m 

f ~ -  (4.6) 
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We apply equation (4.6) to the space-time metric tensor found in the previous 
section. We must,  however, first carry the computations for a finite length 
source. By letting the length approach infinity, we then get the appropriate 
force. 

Thus, consider a radially moving test particle. From equations (2.1) and 
(4.1) one finds 

v a = (vx/fe -v, 0, 0) (4.7) 

Substituting v ~ and the metric tensor of  equation (4.7) and (2.1), respectively, 
into equation (4.6), then letting L approach infinity and finally noting 
equations (3.2) and (3.5), we find 

m X m Cv] (4.8) 

where, GX = -C2/2C3 and C = Q/v~C-33. It should be remarked that f ~  is a well- 
de fin ed q uan tity. 

From the conditions found previously, C2 < 0 and C3 > 0, 2 we find 
X > 0. Thus, f l ,  the gravitational force, is repulsive. For a moving test particle, 
f 3  represents the Coriolis effect. 
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